
Obfuscated Information Classification

González Rodríguez Florencio Javier, Aguirre Anaya Eleazar, Salinas Rosales Moisés,

Barrón Fernández Ricardo

Instituto Politécnico Nacional, Centro de investigación en Computación, Mexico City, Mexico
fjgonzalezr92@gmail.com, {eaguirre, rbarron }@cic.ipn.mx

msalinasr@ipn.mx

Abstract. When a security assessment is executed, time and resources are limited

therefore it is essential to identify those points that are most likely vulnerable and

focus on those. Such points are identified in the information gathering stage

turning it in a vital step during the assessment. Emerging a question about if

gathered information could be manipulated by a third party either by functionality

or by obscuring information goals. This paper proposes an information classifier

in order to identify obfuscated information, classifying into obfuscated or integral

information, with the purpose to be used during a “black box pentesting”

assessment.

Keywords: black box pentesting, information gathering, security assessment,

network fingerprinting.

1 Introduction

Information gathering is the first and most important phase in Penetration Testing. The

goal is to obtain all possible target information with the purpose to get a security target

profile like network architecture, features of devices involved, or personal user’s

information that could be useful in the vulnerability testing. This kind of information

should not be accessible for not authorized people, but in many cases it cannot be

limited at all. For example, certain information in devices like open ports, protocol

implementations, replay information from certain ports and so on. Penetration testers

will take advantage of this to find vulnerabilities before attackers do.

Organizations used to mitigate such problem implementing some security controls

like firewalls, letting block some patterns and limit access. Even with possible

incongruence in configuration as is mentioned in [1]. On the other hand, for those

information that cannot be limited at all, there are devices able to modify default

protocol implementation fields, like protocol scrubbers that try to avoid protocol

fingerprinting with the intention to mislead attackers.

This paper proposes a classifier for information collected from “information gathering”

phase. Taking as input implementation features from the traffic generated during the

information gathering execution in a black box pentesting, extracting default

implementation values that can be changed either by the vendor or a security

professional, in order to identify incongruities between network protocol

implementations. Incongruities identification refers to compare basically results of

three OS Fingerprinting techniques. First one analyzing TCP and IP protocol in order

153

ISSN 1870-4069

Research in Computing Science 143, 2017pp. 153–165; rec. 2017-06-18; acc. 2017-09-02

to fingerprint the Operating System. Second one using ICMP protocol characteristics

and third one analyzing some services banners results to identify modifications in the

strings and also to fingerprint OS. Classification for each technique is executed using

Machine Learning algorithms described in Section 5 “Analysis and Design”.

2 Security Controls for OS Fingerprinting Prevention

Actually does not exist any tool that offers a target profile considering obfuscated

information during a security assessment. This research proposes matching results

through OS Fingerprinting using three techniques. Such techniques are related to some

previous researches but having a different perspective. For example, can be found

proposals like in [2] where Jason Barnes and Crowley make OS fingerprinting using a

passive traffic fingerprinting mechanism, to identify hosts features involved in

communications without interfering in any way. Using essentially SYN TCP/IP flags,

obtaining features to identify HTTP clients, physical link types, and even if a host is

behind a NAT device on a large net- work, receiving traffic from a Passive Network

Appliance “PNA” in [3]. Being not necessary to make any system call, they have made

evaluations in two lab- oratories: with constructed traffic and in an operational setting

with real world traffic.

They compare their proposal with p0f and k-p0f tools, measuring the average

maximum sustainable throughput across 30 second intervals 10 times for each mixture

of traffic and type of monitor, resulting k-p0f better than p0f.

Same idea is analyzed in this proposal to fingerprint Operating Systems in order to

compare results between different techniques and evaluate possibility of obfuscated

information if any incongruities are identified.

In [10] Prigent, Vichot and Harrouet present IpMorph in order to show that

fingerprint concealment and spoofing are uniformly possible against different known

fingerprinting tools, IpMorph is a counter-recognition software implemented as a user-

mode TCP/IP stack, ensuring session monitoring and on the fly packets re-writing used

against fingerprinting tools like Nmap, Xprobe2, Ring2, SinFP and p0f. IpMorph cover

more characteristics and analyses deeply OS Finger- printers, even mention those able

to get services banners in order to identify an Operating System, but they did not cover

such aspect.

Our proposal covers the identification of those devices that protect an OS through

the manipulation of banners structure. Therefore, is proposed a technique to identify if

a Service Banner could have been manipulated.

Protocol scrubbers modify default fields of multiple protocols in order to reduce the

number of techniques than can be used to identify an Operating System. Then they were

analyzed to take in consideration protocols fields that usually protocol scrubbers

modify. Analyzing congruency between protocols implementation and services

banners.

154

Florencio Javier González Rodríguez, Eleazar Aguirre Anaya, et al.

Research in Computing Science 143, 2017 ISSN 1870-4069

3 Methodology

Experimental methodology was used in this research, since there exists a correlation

between variables described in Tables 2 and 4 in Section 4, that were needed to analyze

them through certain active and passive experiments, having results that are compared

with expected ones, and take most descriptive values. Such methodology was divided

in two phases:

Exploratory: This phase identifies questions that were tried to answer in testing phase,

in this research such questions are mainly 3:

1. Can be identified obfuscated information?

2. Can be identified a device that obfuscates information?

3. Which features make identifiable obfuscated information?

Testing: In the testing phase planted questions were tried to be solved through

experiments where analyzed values that could have been manipulated.

Question 1 was answered through the analysis and comparative between default values

for each device analyzed (NAT, Protocol Scrubber, Hardened host).

Questions 2 were answered through the analysis of data type and behavior from values

obtained during the analysis for each device.

Questions 3 were answered through the analysis of data type from values obtained

during the analysis for each device, then testing Machine Learning algorithms and

feature selection step.

4 Analysis and Design

4.1 Algorithms

Classification is a way to solve a categorization problem using Machine Learning, there

exist different algorithms used for solving certain problems shown in Fig. 1.

Machine Learning was used in this research to classify an Operating System given

some features. Mainly are considered three elements for the classifier input, TCP + IP

characteristics implementation, ICMP characteristics implementation and Service

Banners analysis. First step is to identify the Operating System through OS

Fingerprinting, analyzing TCP and IP headers of packets, due TCP/IP is the most

common implemented protocol and most usable, be- sides TCP and IP have many field

values that are not specified formally in RFC, it is known that certain security policies

involve to block ports that are not used by a host, but it is possible even with blocked

port analyze their behavior.

155

Obfuscated Information Classification

Research in Computing Science 143, 2017ISSN 1870-4069

Fig. 1. Top Machine learning algorithms.

Mentioned inputs where selected analyzing related works about Protocol Scrubbers

and NAT network analysis presented in Section 2. Characteristics for each input were

obtained through an experimental process. First analyzing documentation about

network Kernel parameters, Open Source Protocol scrubbers documentation and

features analyzed in research papers. Then analyzing real traffic samples on different

environments, in order to be compared versus documentation. Finally, such features are

presented in subsection 4.3 for each implemented algorithm.

Mainly 3 open source protocol scrubbers were analyzed due others published

protocol scrubbers are not open source, and it is not possible to analyze at all. Protocol

Scrubbers analyzed were:

– IP Personality in [5]

– Scrub tech in [6]

– IP log in [7]

For the analysis in this research each Protocol Scrubber was installed in a virtual and

physical machine. Studying configuration for each of them in order to get a list of values

they use to change. As result were found 14 values that are used to identify Protocol

Scrubbers. Being mainly TCP, IP, UDP and ICMP protocols those that are modified by

Protocol Scrubbers, in order to affect indirectly things like RTT, timers and so on. Even

packet length is used to hide an operating system implementation, due different

payloads data used by each developer, in order to mislead a fingerprinting process

executed by a tester. These variables are shown in Table 1.

It is possible to tag these features as an Operating System name, in order to identify

an Operating System given some features.

Table 1. Values to identify Protocol Scrubber.

TCP TS option Urgent pointer Winsize Sack Ack retries

 Nop option Winscale Max window Options order

IP TTL ID ToS Flags

ICMP Length Payload

156

Florencio Javier González Rodríguez, Eleazar Aguirre Anaya, et al.

Research in Computing Science 143, 2017 ISSN 1870-4069

In this research feature selection was made through a specialist person knowledge,

letting to tag features for some systems. The type of features analyzed in each protocol

are nominal values, therefore four classifier algorithms were selected to identify the

OS, finally AdaBoost is implemented to choose best decision between classifiers.

Classifiers implemented for OS Fingerprinting using TCP+IP, ICMP and Services

banners are:

– KNN

– Bayes

– Decision Tree

Classifiers were selected based on accuracy, training time, linearity, number of

parameters and number of features. Taking in consideration data used in this proposal.

Each classifier was implemented in python using each algorithm model. Adapting

parameters described in “Implemented algorithms” section, in order to get good results

for classification. However, each of them was compared with Scikit framework,

obtaining better results for some classifiers using the developed classifier and

sometimes using Scikit. Best results are present through this paper.

4.2 Features

Features that were used by each algorithm are presented in section 4.3, however data

used for training algorithms have a common structure shown in Table 2a, where xn is a

feature from the protocol and OS is the Operating System that is a label for features

row. xn is a field implementation protocol, or a value that can be obtained from

interactions with the target. These values characterize or represent to the target, and can

be used to make OS Fingerprinting.

Table 2. Features structure.

The dataset used to classify using TCP+IP fields is shown in Table 2b and has the

same structure shown in Table 2a. Such values are result of a previous analysis over

Fingerprinting tools and those tools that try to avoid fingerprinting like Protocol

Scrubbers.

The dataset used to classify using ICMP fields is shown in Table 2c and has the

same structure shown in Table 2a.

157

Obfuscated Information Classification

Research in Computing Science 143, 2017ISSN 1870-4069

Finally, the dataset used to classify using Services Banners is shown in Table 2d

and has the same structure shown in Table 2a, but starting with operating system due

strings longitude is not the same for all banners.

Data used for training and testing are samples shown in Tables 3 from Open source

fingerprinting tools, different implementations extraction, and for Banners were used

data from servers extracted using Shodan service. Each sample for TCP+IP and ICMP

is a list of values for each field described in Table 2b, 2c with an associated label that

is the Operating System name.

Table 3: Number of samples for training and testing.

4.3 Implemented Algorithms

Three algorithms are evaluated using metrics in Equations 1, 2, 3 based on a confusion

matrix for each algorithm:

𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦(𝑂𝑆) = 𝐴𝑖𝑖 ∑ 𝐴𝑖𝐽𝑛
𝐽=1

, (1)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑂𝑆) = 𝐴𝑖𝑖 / ∑ 𝐴𝐽𝑖

𝑛

𝐽=1

, (2)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ∑ 𝐴𝑖𝑖

𝑛

𝑖=1
 / ∑ ∑ 𝐴𝑖𝐽,

𝑛

𝐽=1

𝑛

𝑖=1

 (3)

where Recovery is the proportion of cases correctly identified as belonging to class C

among all cases that truly belong to class C. Precision also called true positive rate, is

the proportion of cases correctly identified as belonging to class C among all cases of

which the classifier claims that they belong to class C. Finally, Accuracy is the ratio of

correct predictions to total predictions made.

Naive Bayes

Naive Bayes is a probabilistic classifier based on the Bayes theorem with strong naive

independence assumptions between the features. Due this classifier assume that the

value of a particular feature is independent of the value of any other feature, given a

class C. For this proposal it is important because protocol scrubbers modify values from

time to time, then if values were dependent, classifier will not work at all as Decision

Tree classifier that will be also described. Equations used in this research for Naive

Bayes are show in equation 4:

158

Florencio Javier González Rodríguez, Eleazar Aguirre Anaya, et al.

Research in Computing Science 143, 2017 ISSN 1870-4069

𝑃(𝐶|𝑥1, 𝑥2, … , 𝑥𝑛) =
(∏ 𝑃(𝑋𝑖|𝐶)𝑃(𝐶)𝑛

𝑖=1

𝑃(𝑥1, 𝑥2, … , 𝑥𝑛)
=

𝑃(𝑥1, 𝑥2, … , 𝑥𝑛|𝐶)𝑃(𝐶)

𝑃(𝑥1,𝑥2, … , 𝑥𝑛)
, (4)

where:

𝑃(𝐶) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶 𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠
,

𝑃(𝑥𝑛|𝐶) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑜𝑤𝑠 𝑡ℎ𝑎𝑡 ℎ𝑎𝑣𝑒 𝑥, 𝑎𝑛𝑑 𝑎𝑟𝑒 𝐶 𝑐𝑙𝑎𝑠𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑜𝑤𝑠 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝐶 𝑐𝑙𝑎𝑠𝑠
,

𝑃(𝑥1, 𝑥2, … , 𝑥𝑛|𝐶) = 𝑃(𝑥1|𝐶)𝑃(𝑥2|𝐶) … 𝑃(𝑥𝑛 |𝐶),

𝑃(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑃(𝑥1)𝑃(𝑥2) … 𝑃(𝑥𝑛).

Table 4 shows the confusion matrix for Naive Bayes, with 20 samples for each

Operating System where 10 were taken from training samples and 10 were different

from training samples.

Table 4. Confusion Matrix for Naive Bayes.

Windows 9x/NT OSX 10.x Linux 2.2.x Linux 4.x Cisco 12.0 OpenBSD 2.x Windows

9x/NT 20

Linux 2.2.x 18 2

Linux 4.x 1 19

Cisco 12.0 20

OpenBSD 2.x 1 19

Naive Bayes Classifier evaluation

Table 5. Evaluations metrics for Naive Bayes.

Recovery Precision

OS

Windows 9x/NT 1 1

OSX 10.x 0.9 0.9473

Linux 2.2.x 0.9 0.9473

Linux 4.x 0.95 0.9047

Cisco 12.0 1 1

OpenBSD 2.x 0.95 0.9047

Accuracy = 114/120 = 0.95

K nearest neighbours

K nearest neighbors is a classifier that stores all available cases and classifies new cases

based on a similarity measure. Equations used in this research are show in Equation 5:

d = √(x1 − y1)2 + (x2 − y2)2 + ... + (xn − yn)2, (5)

where:

xi is the feature in the database

yi is the input feature to classify

d is the distances that means how different are the input and the database item

159

Obfuscated Information Classification

Research in Computing Science 143, 2017ISSN 1870-4069

Table 6 shows the confusion matrix for KNN, with 20 samples for each Operating

System where 10 were taken from training samples and 10 were different from training

samples.

Table 6. Confusion Matrix for KNN.

Windows 9x/NT OSX 10.x Linux 2.2.x Linux 4.x Cisco 12.0 OpenBSD 2.x

Windows 9x/NT 20

OSX 10.x 17 3

Linux 2.2.x 117 3

Linux 4.x 2 16 2

Cisco 12.0 20

OpenBSD 2.x 3 17

KNN Classifier Evaluation Metrics obtained from confusion matrix in Table 7 are

calculated as: Accuracy = 107/120 = 0.8916

Table 7. Evaluations metrics for KNN.

Recovery Precision

OS

Windows 9x/NT 1 1

OSX 10.x 0.85 0.85

Linux 2.2.x 0.85 0..8947

Linux 4.x 0.8 0.8421

Cisco 12.0 1 1

OpenBSD 2.x 0.85 0.7727

Decision tree

Decision tree is a predictive model where the target variable can take a discrete set of

values, leaves represent class labels and branches represent conjunctions of features

that lead to those class labels.

Table 8 shows the confusion matrix for Decision Tree, with 20 samples for each

Operating System where 10 were taken from training samples and 10 were different

from training samples.

Table 8. Confusion Matrix for Decision Tree.

Windows 9x/NT OSX 10.x Linux 2.2.x Linux 4.x Cisco 12.0 OpenBSD 2.x Windows 9x
OSX 10.x 20

Linux 2.2.x 17 3

Linux 4.x 15 5

Cisco 12.0 20

OpenBSD 2.x 10 10

Decision Tree Classifier Evaluation Metrics obtained from confusion matrix in

Table 9 are calculated as: Accuracy = 102/120 = 0.85

It is worth to mention that Decision Tree had bad results when features do not exist

in the database, however this property could be useful to identify specific hardened

hosts or NATted networks in future work. Due hardened hosts just change their default

implementation values just when is hardened and is not making changes repeatedly,

160

Florencio Javier González Rodríguez, Eleazar Aguirre Anaya, et al.

Research in Computing Science 143, 2017 ISSN 1870-4069

also it is known that exist some hardened hosts distributions. Such systems can be

analyzed and added to the database, ensuring that is going to be identified by Decision

Tree algorithm.

Table 9. Evaluations metrics for Decision Tree.

Recovery Precision
OS

Windows 9x/NT 1 1

OSX 10.x 1 1

Linux 2.2.x 0.85 1

Linux 4.x 0.75 0.8333

Cisco 12.0 1 1

OpenBSD 2.x 0.5 1

ADA Boost

ADA Boost is an algorithm for constructing a “strong” classifier as a linear combination

of others classifier referenced as “weak”. General idea is represented by Equation 6:

𝑓(𝑥) = ∑ 𝑎𝑡ℎ𝑡(𝑥)

𝑇

𝑖=1

, (6)

where:

ht(x) is a “weak” classifier

α is an assigned weight for each instance in the training dataset.

Each weighted prediction pass through a classifier, which is then weighted as “alpha

values”. Finally, each alpha value is summed up in the circle that processes the final

result as Fig. 2 shows.

Fig. 2. Banners classification for OS Fingerprinting.

161

Obfuscated Information Classification

Research in Computing Science 143, 2017ISSN 1870-4069

In this research weak classifiers are Naive Bayes, KNN and Decision Tree.

Obtaining an Operating system and a weight after classification process. Resulting with

a most representative Operating System for the IP address analyzed.

Proposal

Fig. 3 shows the proposal based on results shown in Tables 5, 7 y 9. Where is executed

an OS Fingerprinting based on TCP+IP, ICMP and Services Banners analysis. It is

divided in three steps, first one is to identify an Operating System using TCP+IP

characteristics using three tested classifiers, having as a result three Operating Systems

that presents just one IP Address. If some of them are different then they could be

manipulating information, that is considered as information obfuscation, decision that

is taken by ADA Boost algorithm. Second step is the same idea but using as input ICMP

characteristics, also considering last result in order to match and get a congruence value

as reference. Finally, Banners are analyzed, considering previous results and having as

a result an Operating system name and a value that represents congruence between

results.

Fig. 3. Classifiers proposal.

Because of the number of features of TCP + IP useful for OS Fingerprinting, these

protocols are analyzed to identify with most accuracy the Operating System. Each

classifier has a result that should be the same for the three classifiers, because it means

that network implementation for the host has not been modified, but if incongruities are

identified then it could be obfuscating information.

In order to have just one result ADA Boost is implemented to choose the best

decision choosing an OS that identifies an IP address. Finally, ADA Boost has just one

result as output in order to be analyzed in the next step as Fig. 4a shows.

162

Florencio Javier González Rodríguez, Eleazar Aguirre Anaya, et al.

Research in Computing Science 143, 2017 ISSN 1870-4069

For the next step is analyzed ICMP, that offers less features to identify an Operating

System, but they are enough to detect ambiguities between TCP+IP and ICMP, also

joining results for each classifier through ADA Boost as is shown in Fig. 4b.

Finally, Services Banners analysis are the last step due services that were installed

after the initial hardening offers clues about the Operating System, obtaining a new

feature to compare against TCP/IP and ICMP analysis, having as an output a numeric

value that represent if exist ambiguity between the three analysis, letting to classify as

obfuscated or integral information. Structure is shown in Fig. 4c

(a) TCP+IP classification for OS Fingerprinting. b) ICMP classification for OS

Fingerprinting.

(c) Banners classification for OS Fingerprinting.

Fig. 4. Proposal classification algorithms structures for OS Fingerprinting.

5 Results Analysis

In Table 10 can be seen evaluation metrics for each algorithm obtained from previous

reported tests.

For Windows 9x/NT, default values in the dataset are kind of different compared

with other OS samples, range of values have big numeric differences versus others, so

results are as expected, classifiers are able to identify Windows 9x/NT 100% of tests.

In OSX 10.x percent is not the best for those algorithms that offers how similar is the

input versus the training dataset. It is because of as it is known OSX is an Operating

System based on BSD Family OS, then it can be seen in Tables 4, 6 that sometimes

classifier confuses OSX with BSD. However, Decision Tree did not make any mistake,

it is because Decision Tree classifies it just if all characteristics match with a dataset

sample.

163

Obfuscated Information Classification

Research in Computing Science 143, 2017ISSN 1870-4069

For Linux Operating system with different Kernels it is the same as OSX analysis.

Classifiers confuses Kernel because of Operating Systems Kernels are similar. But if

they have unique default values, they are classified correctly by Decision Tree, for

example old kernel versions of Linux.

Finally, for other systems with no similar characteristics with dataset samples, for

example Cisco 12.0 and Windows 9x/NT, are identified without any problem. But if

more similar versions are added, then classifiers will start making mistakes. Even when

classifiers made some mistakes, accuracy keeps an acceptable value. Results that are

evaluated by ADA Boost algorithm in order to get best results from classifiers.

Table 10. Evaluation metrics for implemented Classifiers.

OS

Bayes

Recovery

Precision

KNN

Recovery

Precision

Decision Tree

Recovery

Precision

Windows

9x/NT

1 1 1 1 1 1

OSX 10.x 0.9 0.9473 0.85 0.85 1 1

Linux 2.2.x 0.9 0.9473 0.85 0..8947 0.85 1

Linux 4.x 0.95 0.9047 0.8 0.8421 0.75 0.8333

Cisco 12.0 1 1 1 1 1 1

OpenBSD 2.x 0.95 0.9047 0.85 0.7727 0.5 1

Accuracy 0.95 0.8916 0.85

6 Future Work

The current proposal represents the base for obfuscated information identification, but

it is needed to identify as well those devices that are able to obscure integral

information, therefore future work involves identification of devices like NAT

Networks, Protocol Scrubbers and Hardened hosts. Having as a result obfuscated

information but also those devices able to obfuscate them. Letting to a tester identify

these kind of security controls, concentrating on systems emanating real information

that can be used to compromise them.

7 Conclusions

Obfuscated information identification hypothesis through protocol implementation

analysis is demonstrated using classification algorithms, even with features obtained

from passive information gathering.

Each algorithm has advantages and disadvantages as can be seen in result analysis

section, then Adaboost complements the work to get best results for each test. Decision

Tree and KNN seems to be worst algorithms to classify this kind of problem. However,

it is not in this research, because of if a specific obfuscation system was identified and

integrated to data base, it has high probability to be identified using this proposal. For

example, a specific version of a protocol scrubber, a public hardened host system and

so on. For Bayes can be seen that have best results. Due Bayes is probabilistic, letting

164

Florencio Javier González Rodríguez, Eleazar Aguirre Anaya, et al.

Research in Computing Science 143, 2017 ISSN 1870-4069

modify some equation properties in order algorithm decide based on a binary value, but

having a result about how much is similar the input with database samples.

Then based on results it is possible to identify obfuscated information taking

advantage of some network protocols implementations. Just analyzing any

incongruence in their configurations between those modified protocols. Task that is

valuable for penetration testers during a black box security assessment, due it is

important to focus over those most likely vulnerable systems in the environment,

reducing time and resources. But also having present those possible devices that could

be a security control.

Acknowledgment. The authors gratefully acknowledge use of the services and

facilities of the Centro de Investigación en Computación (CIC) and Instituto Politécnico

Nacional (IPN), also to Consejo Nacional de Ciencia y Tecnología (CONACYT) for

supporting this research.

References

1. Antonis, P., Polydoros, P., Miltos, G.: A firewall module resolving rules consistency. TEI

of Crete (2017)

2. Jason, B., Patrick, C.: k-p0f: A High-Throughput Kernel Passive OS Fingerprinter.

Washington University in St. Louis (2013)

3. Schultz, M., Ben, W., Patrick, C.: A Passive Network Appliance for Real-Time Network

Monitoring. Washington University in Saint Louis (2011)

4. Guillaume, P., Florian, V., Fabrice, H.: IpMorph: fingerprinting spoofing unification.

Plouzan, France (2009)

5. IP Personality: http://ippersonality.sourceforge.net

6. Scrub tech: http://scrub-tech.sourceforge.net/

7. IPLog: http://ojnk.sourceforge.net/stuff/iplog

8. Massimiliano, A., Ermanno, B., Sushil, J.: A deception based approach for defeating OS

and Service Fingerprinting. Naples, Italy (2015)

9. Matthew, S., Robert, M., Farnam, J.: Defeating TCP/IP Stack Fingerprinting. Ann Arbor,

Michigan (2000)

10. Steven, M.: A technique for counting NATted Hosts. Marseille, France (2002)

11. Liang, W., Kevin, P., Aditya, A., Thomas, R., Thomas, S.: Seeing through Network

Protocol Obfuscation. Denver Colorado, USA (2015)

12. Quinlan, J.: Induction of Decision Trees. Sydney, Australia (2017)

165

Obfuscated Information Classification

Research in Computing Science 143, 2017ISSN 1870-4069

