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Abstract. When a security assessment is executed, time and resources are limited 

therefore it is essential to identify those points that are most likely vulnerable and 

focus on those. Such points are identified in the information gathering stage 

turning it in a vital step during the assessment. Emerging a question about if 

gathered information could be manipulated by a third party either by functionality 

or by obscuring information goals. This paper proposes an information classifier 

in order to identify obfuscated information, classifying into obfuscated or integral 

information, with the purpose to be used during a “black box pentesting” 

assessment. 

Keywords: black box pentesting, information gathering, security assessment, 

network fingerprinting. 

1 Introduction 

Information gathering is the first and most important phase in Penetration Testing. The 

goal is to obtain all possible target information with the purpose to get a security target 

profile like network architecture, features of devices involved, or personal user’s 

information that could be useful in the vulnerability testing. This kind of information 

should not be accessible for not authorized people, but in many cases it cannot be 

limited at all. For example, certain information in devices like open ports, protocol 

implementations, replay information from certain ports and so on. Penetration testers 

will take advantage of this to find vulnerabilities before attackers do. 

Organizations used to mitigate such problem implementing some security controls 

like firewalls, letting block some patterns and limit access. Even with possible 

incongruence in configuration as is mentioned in [1]. On the other hand, for those 

information that cannot be limited at all, there are devices able to modify default 

protocol implementation fields, like protocol scrubbers that try to avoid protocol 

fingerprinting with the intention to mislead attackers. 

This paper proposes a classifier for information collected from “information gathering” 

phase. Taking as input implementation features from the traffic generated during the 

information gathering execution in a black box pentesting, extracting default 

implementation values that can be changed either by the vendor or a security 

professional, in order to identify incongruities between network protocol 

implementations. Incongruities identification refers to compare basically results of 

three OS Fingerprinting techniques. First one analyzing TCP and IP protocol in order 
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to fingerprint the Operating System. Second one using ICMP protocol characteristics 

and third one analyzing some services banners results to identify modifications in the 

strings and also to fingerprint OS. Classification for each technique is executed using 

Machine Learning algorithms described in Section 5 “Analysis and Design”. 

2 Security Controls for OS Fingerprinting Prevention 

Actually does not exist any tool that offers a target profile considering obfuscated 

information during a security assessment. This research proposes matching results 

through OS Fingerprinting using three techniques. Such techniques are related to some 

previous researches but having a different perspective. For example, can be found 

proposals like in [2] where Jason Barnes and Crowley make OS fingerprinting using a 

passive traffic fingerprinting mechanism, to identify hosts features involved in 

communications without interfering in any way. Using essentially SYN TCP/IP flags, 

obtaining features to identify HTTP clients, physical link types, and even if a host is 

behind a NAT device on a large net- work, receiving traffic from a Passive Network 

Appliance “PNA” in [3]. Being not necessary to make any system call, they have made 

evaluations in two lab- oratories: with constructed traffic and in an operational setting 

with real world traffic. 

They compare their proposal with p0f and k-p0f tools, measuring the average 

maximum sustainable throughput across 30 second intervals 10 times for each mixture 

of traffic and type of monitor, resulting k-p0f better than p0f.  

Same idea is analyzed in this proposal to fingerprint Operating Systems in order to 

compare results between different techniques and evaluate possibility of obfuscated 

information if any incongruities are identified. 

In [10] Prigent, Vichot and Harrouet present IpMorph in order to show that 

fingerprint concealment and spoofing are uniformly possible against different known 

fingerprinting tools, IpMorph is a counter-recognition software implemented as a user-

mode TCP/IP stack, ensuring session monitoring and on the fly packets re-writing used 

against fingerprinting tools like Nmap, Xprobe2, Ring2, SinFP and p0f. IpMorph cover 

more characteristics and analyses deeply OS Finger- printers, even mention those able 

to get services banners in order to identify an Operating System, but they did not cover 

such aspect. 

Our proposal covers the identification of those devices that protect an OS through 

the manipulation of banners structure. Therefore, is proposed a technique to identify if 

a Service Banner could have been manipulated. 

Protocol scrubbers modify default fields of multiple protocols in order to reduce the 

number of techniques than can be used to identify an Operating System. Then they were 

analyzed to take in consideration protocols fields that usually protocol scrubbers 

modify. Analyzing congruency between protocols implementation and services 

banners. 
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3 Methodology 

Experimental methodology was used in this research, since there exists a correlation 

between variables described in Tables 2 and 4 in Section 4, that were needed to analyze 

them through certain active and passive experiments, having results that are compared 

with expected ones, and take most descriptive values. Such methodology was divided 

in two phases: 

Exploratory: This phase identifies questions that were tried to answer in testing phase, 

in this research such questions are mainly 3: 

1. Can be identified obfuscated information? 

2. Can be identified a device that obfuscates information? 

3. Which features make identifiable obfuscated information? 

Testing: In the testing phase planted questions were tried to be solved through 

experiments where analyzed values that could have been manipulated. 

Question 1 was answered through the analysis and comparative between default values 

for each device analyzed (NAT, Protocol Scrubber, Hardened host). 

Questions 2 were answered through the analysis of data type and behavior from values 

obtained during the analysis for each device. 

Questions 3 were answered through the analysis of data type from values obtained 

during the analysis for each device, then testing Machine Learning algorithms and 

feature selection step. 

4 Analysis and Design 

4.1 Algorithms 

Classification is a way to solve a categorization problem using Machine Learning, there 

exist different algorithms used for solving certain problems shown in Fig. 1. 

Machine Learning was used in this research to classify an Operating System given 

some features. Mainly are considered three elements for the classifier input, TCP + IP 

characteristics implementation, ICMP characteristics implementation and Service 

Banners analysis. First step is to identify the Operating System through OS 

Fingerprinting, analyzing TCP and IP headers of packets, due TCP/IP is the most 

common implemented protocol and most usable, be- sides TCP and IP have many field 

values that are not specified formally in RFC, it is known that certain security policies 

involve to block ports that are not used by a host, but it is possible even with blocked 

port analyze their behavior. 
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Fig. 1. Top Machine learning algorithms. 

Mentioned inputs where selected analyzing related works about Protocol Scrubbers 

and NAT network analysis presented in Section 2. Characteristics for each input were 

obtained through an experimental process. First analyzing documentation about 

network Kernel parameters, Open Source Protocol scrubbers documentation and 

features analyzed in research papers. Then analyzing real traffic samples on different 

environments, in order to be compared versus documentation. Finally, such features are 

presented in subsection 4.3 for each implemented algorithm. 

Mainly 3 open source protocol scrubbers were analyzed due others published 

protocol scrubbers are not open source, and it is not possible to analyze at all. Protocol 

Scrubbers analyzed were: 

– IP Personality in [5] 

– Scrub tech in [6] 

– IP log in [7] 

For the analysis in this research each Protocol Scrubber was installed in a virtual and 

physical machine. Studying configuration for each of them in order to get a list of values 

they use to change. As result were found 14 values that are used to identify Protocol 

Scrubbers. Being mainly TCP, IP, UDP and ICMP protocols those that are modified by 

Protocol Scrubbers, in order to affect indirectly things like RTT, timers and so on. Even 

packet length is used to hide an operating system implementation, due different 

payloads data used by each developer, in order to mislead a fingerprinting process 

executed by a tester. These variables are shown in Table 1. 

It is possible to tag these features as an Operating System name, in order to identify 

an Operating System given some features. 

Table 1. Values to identify Protocol Scrubber. 

TCP TS option Urgent pointer Winsize Sack Ack retries 

 Nop option Winscale Max window Options order  

IP TTL ID ToS Flags  

ICMP Length Payload    
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In this research feature selection was made through a specialist person knowledge, 

letting to tag features for some systems. The type of features analyzed in each protocol 

are nominal values, therefore four classifier algorithms were selected to identify the 

OS, finally AdaBoost is implemented to choose best decision between classifiers. 

Classifiers implemented for OS Fingerprinting using TCP+IP, ICMP and Services 

banners are: 

– KNN 

– Bayes 

– Decision Tree 

Classifiers were selected based on accuracy, training time, linearity, number of 

parameters and number of features. Taking in consideration data used in this proposal. 

Each classifier was implemented in python using each algorithm model. Adapting 

parameters described in “Implemented algorithms” section, in order to get good results 

for classification. However, each of them was compared with Scikit framework, 

obtaining better results for some classifiers using the developed classifier and 

sometimes using Scikit. Best results are present through this paper. 

4.2 Features 

Features that were used by each algorithm are presented in section 4.3, however data 

used for training algorithms have a common structure shown in Table 2a, where xn is a 

feature from the protocol and OS is the Operating System that is a label for features 

row. xn is a field implementation protocol, or a value that can be obtained from 

interactions with the target. These values characterize or represent to the target, and can 

be used to make OS Fingerprinting. 

Table 2. Features structure. 

 

The dataset used to classify using TCP+IP fields is shown in Table 2b and has the 

same structure shown in Table 2a. Such values are result of a previous analysis over 

Fingerprinting tools and those tools that try to avoid fingerprinting like Protocol 

Scrubbers. 

The dataset used to classify using ICMP fields is shown in Table 2c and has the 

same structure shown in Table 2a. 
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Finally, the dataset used to classify using Services Banners is shown in Table 2d 

and has the same structure shown in Table 2a, but starting with operating system due 

strings longitude is not the same for all banners. 

Data used for training and testing are samples shown in Tables 3 from Open source 

fingerprinting tools, different implementations extraction, and for Banners were used 

data from servers extracted using Shodan service. Each sample for TCP+IP and ICMP 

is a list of values for each field described in Table 2b, 2c with an associated label that 

is the Operating System name. 

Table 3: Number of samples for training and testing. 

4.3 Implemented Algorithms 

Three algorithms are evaluated using metrics in Equations 1, 2, 3 based on a confusion 

matrix for each algorithm: 

𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦(𝑂𝑆) =  𝐴𝑖𝑖 ∑ 𝐴𝑖𝐽𝑛
𝐽=1

, (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑂𝑆) =  𝐴𝑖𝑖  / ∑ 𝐴𝐽𝑖

𝑛

𝐽=1

, (2) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ∑ 𝐴𝑖𝑖

𝑛

𝑖=1
 / ∑ ∑ 𝐴𝑖𝐽,

𝑛

𝐽=1

𝑛

𝑖=1

 (3) 

where Recovery is the proportion of cases correctly identified as belonging to class C 

among all cases that truly belong to class C. Precision also called true positive rate, is 

the proportion of cases correctly identified as belonging to class C among all cases of 

which the classifier claims that they belong to class C. Finally, Accuracy is the ratio of 

correct predictions to total predictions made. 

Naive Bayes 

Naive Bayes is a probabilistic classifier based on the Bayes theorem with strong naive 

independence assumptions between the features. Due this classifier assume that the 

value of a particular feature is independent of the value of any other feature, given a 

class C. For this proposal it is important because protocol scrubbers modify values from 

time to time, then if values were dependent, classifier will not work at all as Decision 

Tree classifier that will be also described. Equations used in this research for Naive 

Bayes are show in equation 4: 
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𝑃(𝐶|𝑥1, 𝑥2, … , 𝑥𝑛) =  
(∏ 𝑃(𝑋𝑖|𝐶)𝑃(𝐶)𝑛

𝑖=1

𝑃(𝑥1, 𝑥2, … , 𝑥𝑛)
=  

𝑃(𝑥1, 𝑥2, … , 𝑥𝑛|𝐶 )𝑃(𝐶)

𝑃(𝑥1,𝑥2, … , 𝑥𝑛)
, (4) 

where: 

𝑃(𝐶) =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶 𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠
, 

𝑃(𝑥𝑛|𝐶) =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑜𝑤𝑠 𝑡ℎ𝑎𝑡 ℎ𝑎𝑣𝑒 𝑥, 𝑎𝑛𝑑 𝑎𝑟𝑒 𝐶 𝑐𝑙𝑎𝑠𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑜𝑤𝑠 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝐶 𝑐𝑙𝑎𝑠𝑠
, 

𝑃(𝑥1, 𝑥2, … , 𝑥𝑛|𝐶) = 𝑃(𝑥1|𝐶 )𝑃(𝑥2|𝐶) … 𝑃(𝑥𝑛 |𝐶), 

𝑃(𝑥1, 𝑥2, … , 𝑥𝑛) =  𝑃(𝑥1)𝑃(𝑥2) … 𝑃(𝑥𝑛). 

Table 4 shows the confusion matrix for Naive Bayes, with 20 samples for each 

Operating System where 10 were taken from training samples and 10 were different 

from training samples. 

Table 4. Confusion Matrix for Naive Bayes. 

Windows 9x/NT OSX 10.x Linux 2.2.x Linux 4.x Cisco 12.0 OpenBSD 2.x Windows 

9x/NT 20 

Linux 2.2.x  18 2   

Linux 4.x  1 19   

Cisco 12.0    20  

OpenBSD 2.x 1    19 

Naive Bayes Classifier evaluation 

Table 5. Evaluations metrics for Naive Bayes. 

Recovery Precision 

OS  

Windows 9x/NT 1 1 

OSX 10.x 0.9 0.9473 

Linux 2.2.x 0.9 0.9473 

Linux 4.x 0.95 0.9047 

Cisco 12.0 1 1 

OpenBSD 2.x 0.95 0.9047 

Accuracy = 114/120 = 0.95 

K nearest neighbours 

K nearest neighbors is a classifier that stores all available cases and classifies new cases 

based on a similarity measure. Equations used in this research are show in Equation 5: 

 

d = √(x1 − y1)2 + (x2 − y2)2 + ... + (xn − yn)2, (5) 

where: 

xi is the feature in the database 

yi is the input feature to classify 

d is the distances that means how different are the input and the database item 
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Table 6 shows the confusion matrix for KNN, with 20 samples for each Operating 

System where 10 were taken from training samples and 10 were different from training 

samples.  

Table 6. Confusion Matrix for KNN. 

Windows 9x/NT OSX 10.x Linux 2.2.x Linux 4.x Cisco 12.0 OpenBSD 2.x 

Windows 9x/NT 20 

OSX 10.x    17    3 

Linux 2.2.x   117 3   

Linux 4.x  2 16  2 

Cisco 12.0    20  

OpenBSD 2.x 3    17 

KNN Classifier Evaluation Metrics obtained from confusion matrix in Table 7 are 

calculated as: Accuracy = 107/120 = 0.8916 

Table 7. Evaluations metrics for KNN. 

Recovery Precision 

OS  

Windows 9x/NT 1 1 

OSX 10.x 0.85 0.85 

Linux 2.2.x 0.85 0..8947 

Linux 4.x 0.8 0.8421 

Cisco 12.0 1 1 

OpenBSD 2.x 0.85 0.7727 

Decision tree 

Decision tree is a predictive model where the target variable can take a discrete set of 

values, leaves represent class labels and branches represent conjunctions of features 

that lead to those class labels. 

Table 8 shows the confusion matrix for Decision Tree, with 20 samples for each 

Operating System where 10 were taken from training samples and 10 were different 

from training samples. 

Table 8. Confusion Matrix for Decision Tree. 

Windows 9x/NT OSX 10.x Linux 2.2.x Linux 4.x Cisco 12.0 OpenBSD 2.x Windows 9x 
OSX 10.x 20    

Linux 2.2.x  17 3 

Linux 4.x   15   5 

Cisco 12.0    20   

OpenBSD 2.x     10 10 

Decision Tree Classifier Evaluation Metrics obtained from confusion matrix in 

Table 9 are calculated as: Accuracy = 102/120 = 0.85 

It is worth to mention that Decision Tree had bad results when features   do not exist 

in the database, however this property could be useful to identify specific hardened 

hosts or NATted networks in future work. Due hardened hosts just change their default 

implementation values just when is hardened and is not making changes repeatedly, 
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also it is known that exist some hardened hosts distributions. Such systems can be 

analyzed and added to the database, ensuring that is going to be identified by Decision 

Tree algorithm. 

Table 9. Evaluations metrics for Decision Tree. 

Recovery Precision 
OS  

Windows 9x/NT 1 1 

OSX 10.x 1 1 

Linux 2.2.x 0.85 1 

Linux 4.x 0.75 0.8333 

Cisco 12.0 1 1 

OpenBSD 2.x 0.5 1 

ADA Boost 

ADA Boost is an algorithm for constructing a “strong” classifier as a linear combination 

of others classifier referenced as “weak”. General idea is represented by Equation 6: 

𝑓(𝑥) =  ∑ 𝑎𝑡ℎ𝑡(𝑥)

𝑇

𝑖=1

, (6) 

where: 

ht(x) is a “weak” classifier 

α is an assigned weight for each instance in the training dataset. 

Each weighted prediction pass through a classifier, which is then weighted as “alpha 

values”. Finally, each alpha value is summed up in the circle that processes the final 

result as Fig. 2 shows. 

 

Fig. 2. Banners classification for OS Fingerprinting. 
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In this research weak classifiers are Naive Bayes, KNN and Decision Tree. 

Obtaining an Operating system and a weight after classification process. Resulting with 

a most representative Operating System for the IP address analyzed. 

Proposal 

Fig. 3 shows the proposal based on results shown in Tables 5, 7 y 9. Where is executed 

an OS Fingerprinting based on TCP+IP, ICMP and Services Banners analysis. It is 

divided in three steps, first one is to identify an Operating System using TCP+IP 

characteristics using three tested classifiers, having as a result three Operating Systems 

that presents just one IP Address. If some of them are different then they could be 

manipulating information, that is considered as information obfuscation, decision that 

is taken by ADA Boost algorithm. Second step is the same idea but using as input ICMP 

characteristics, also considering last result in order to match and get a congruence value 

as reference. Finally, Banners are analyzed, considering previous results and having as 

a result an Operating system name and a value that represents congruence between 

results. 

 

Fig. 3. Classifiers proposal. 

Because of the number of features of TCP + IP useful for OS Fingerprinting, these 

protocols are analyzed to identify with most accuracy the Operating System. Each 

classifier has a result that should be the same for the three classifiers, because it means 

that network implementation for the host has not been modified, but if incongruities are 

identified then it could be obfuscating information. 

In order to have just one result ADA Boost is implemented to choose the best 

decision choosing an OS that identifies an IP address. Finally, ADA Boost has just one 

result as output in order to be analyzed in the next step as Fig. 4a shows. 
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For the next step is analyzed ICMP, that offers less features to identify an Operating 

System, but they are enough to detect ambiguities between TCP+IP and ICMP, also 

joining results for each classifier through ADA Boost as is shown in Fig. 4b. 

Finally, Services Banners analysis are the last step due services that were installed 

after the initial hardening offers clues about the Operating System, obtaining a new 

feature to compare against TCP/IP and ICMP analysis, having as an output a numeric 

value that represent if exist ambiguity between the three analysis, letting to classify as 

obfuscated or integral information. Structure is shown in Fig. 4c 

 

(a) TCP+IP classification for OS Fingerprinting. b) ICMP classification for OS 

Fingerprinting. 

 

(c) Banners classification for OS Fingerprinting. 

Fig. 4. Proposal classification algorithms structures for OS Fingerprinting. 

5 Results Analysis 

In Table 10 can be seen evaluation metrics for each algorithm obtained from previous 

reported tests. 

For Windows 9x/NT, default values in the dataset are kind of different compared 

with other OS samples, range of values have big numeric differences versus others, so 

results are as expected, classifiers are able to identify Windows 9x/NT 100% of tests. 

In OSX 10.x percent is not the best for those algorithms that offers how similar is the 

input versus the training dataset. It is because of as it is known OSX is an Operating 

System based on BSD Family OS, then it can be seen in Tables 4, 6 that sometimes 

classifier confuses OSX with BSD. However, Decision Tree did not make any mistake, 

it is because Decision Tree classifies it just if all characteristics match with a dataset 

sample. 
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For Linux Operating system with different Kernels it is the same as OSX analysis. 

Classifiers confuses Kernel because of Operating Systems Kernels are similar. But if 

they have unique default values, they are classified correctly by Decision Tree, for 

example old kernel versions of Linux. 

Finally, for other systems with no similar characteristics with dataset samples, for 

example Cisco 12.0 and Windows 9x/NT, are identified without any problem. But if 

more similar versions are added, then classifiers will start making mistakes. Even when 

classifiers made some mistakes, accuracy keeps an acceptable value. Results that are 

evaluated by ADA Boost algorithm in order to get best results from classifiers. 

Table 10. Evaluation metrics for implemented Classifiers. 

 

OS 

Bayes 

Recovery 

Precision 

KNN 

Recovery 

Precision 

Decision Tree 

Recovery 

Precision 

Windows 

9x/NT 

1 1 1 1 1 1 

OSX 10.x 0.9 0.9473 0.85 0.85 1 1 

Linux 2.2.x 0.9 0.9473 0.85 0..8947 0.85 1 

Linux 4.x 0.95 0.9047 0.8 0.8421 0.75 0.8333 

Cisco 12.0 1 1 1 1 1 1 

OpenBSD 2.x 0.95 0.9047 0.85 0.7727 0.5 1 

Accuracy 0.95 0.8916 0.85 

6 Future Work 

The current proposal represents the base for obfuscated information identification, but 

it is needed to identify as well those devices that are able to obscure integral 

information, therefore future work involves identification of devices like NAT 

Networks, Protocol Scrubbers and Hardened hosts. Having as a result obfuscated 

information but also those devices able to obfuscate them. Letting to a tester identify 

these kind of security controls, concentrating on systems emanating real information 

that can be used to compromise them. 

7 Conclusions 

Obfuscated information identification hypothesis through protocol implementation 

analysis is demonstrated using classification algorithms, even with features obtained 

from passive information gathering. 

Each algorithm has advantages and disadvantages as can be seen in result analysis 

section, then Adaboost complements the work to get best results for each test. Decision 

Tree and KNN seems to be worst algorithms to classify this kind of problem. However, 

it is not in this research, because of if a specific obfuscation system was identified and 

integrated to data base, it has high probability to be identified using this proposal. For 

example, a specific version of a protocol scrubber, a public hardened host system and 

so on. For Bayes can be seen that have best results. Due Bayes is probabilistic, letting 
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modify some equation properties in order algorithm decide based on a binary value, but 

having a result about how much is similar the input with database samples. 

Then based on results it is possible to identify obfuscated information taking 

advantage of some network protocols implementations. Just analyzing any 

incongruence in their configurations between those modified protocols. Task that is 

valuable for penetration testers during a black box security assessment, due it is 

important to focus over those most likely vulnerable systems in the environment, 

reducing time and resources. But also having present those possible devices that could 

be a security control. 
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